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Abskact. We consider Eigen’s quasispecies model of molecular evolution in the case in 
which the reproduction rates of different molecular species are quenched independent ran- 
dom variables. We show, by analogy with the random energy model, the existence of two 
phases: a ‘neutral’ phase, where no adaptation effects are exhibited, and a (pathological) 
‘adapted‘ phase, where the population is made of identical, optimally adapted molecules, 
and does not evolve. 

One of the problems in understanding the origin of life lies in the identification of the 
mechanism by which starting from the autocatalysis of simple replicating molecules, a 
Darwinian evolutionary mechanism based on reproduction, mutation and selection may 
set in. The fist  steps in this direction were made by Manfred Eigen more than twenty 
years ago (Eigen 1971). In this letter he introduced a model of an evolving population 
of self-replicating entities (which may be identified with the ancestors ofRNA molecules), 
which we shall call the quasispecies model. He was able to show that the eventual 
composition.reached by this population results from a compromise between replication 
efficiency and frequency of mutations, whick recalls the compromise between energy 
“ i z a t i o n  and entropy maximization which detennines thermal equilibrium. More- 
over, he introduced the notion of the error threshold in mutation rate: when the rate 
is smaller than this threshold, the population is made up of molecules of rather similar 
primary structure (nucleotide sequence). Above this threshold, the population becomes 
closer and closer to a random sample. The error threshold is analogous to an order- 
disorder transition in statistical mechanics, 

This analogy was put on a firm basis by LeuthZusser (1987). Indeed, a version of 
the quasispecies model may.be cast in a form amenable to a treatment by the classical 
methods of epilibrfzim statistical mechanics. More recently, Tarazona (1992) exploited 
Leuthsusser’s formulation to investigate numerically several simple forms of the quasi- 
species model and to highlight the analogy between the error threshold and phase 
transitions. 

In this letter we show that the methods of the statistical mechanics of spin glasses 
allow us to investigate analytically the behaviour of the quasispecies model in some 
simple cases. We consider in particular the evolutionary version of Derrida’s random 
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energy model (REM) (Derrida, 1981). This corresponds, in the quasispecies context, to 
the 'rugged fitness landscapes' introduced in evolutionary models by KaulTman and 
Levin (1987). We shall see that, in this case. the error threshold corresponds to a 
freezing transition in sequence space: for mutation rates smaller than the threshold, the 
population is made of molecules with identical primary structure and does not evolve. 

Consider a population of self-reproducing molecules, whose structure may be 
described by a collection of N binary variables, Si= &I, i= 1,2,. . . , N. Then the fmc- 
tion xs of molecules of structure S=& S,, . . . , SN) obeys the following evolution 
equation: 

where A(S)  is the average number of offspring that a molecule of structure S produces 
at the next generation (if one assumes infinite environmental carrying capacity) ind 
WSS. is the conditional probability that the reproduction of a molecule of structure S' 
effectively produces a molecule of structure S, and therefore represents the effects of 
mutations. A convenient expression for the matrix W is given by 

(2) -&4"S" (1 -,,,)N-d(S,S? ss - 
where 0 < w < 1 is the probability of having one mutation per unit and per generation, 
and 

d(S, S') =' 5 (1 - SiS;) (3) 
2 ,-I 

is the number of different units in the structures S and S' respectively. The factor 
z(r) =CsA(S)xsensures the normalization of xs(t) at any generation. In order to derive 
equation (1) one assumes that 'generations' of the self-reproducing molecules are non- 
overlapping and that the number of molecules in the population is saciently large to 
neglect fluctuations in the xs(t). 

It was shown by Leuthausser (1987) that the quasispecies model corresponds to a 
problem in equilibrium statistical mechanics. Indeed, the matrix 

Tss.= WSSA(S') (4) 

can be considered as the transfer matrix for an king-like system of Hamiltonian 
T N  T 

, = I  in1  i- I 
-p~[s( r ) ]  = pS,(r)s'{t+ 1) + ln[A(S(t))l (5) 

where the 'inverse temperature' p is given by 

p= - i h ~ [ w / ( l - w ) ]  

and an irrelevant additive constant has been understood. It is important to keep in mind 
that the quantities one naturally computes within this approach are the unrenormalized 
fractions ydt ) ,  which satisfy the evolution equation 
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The relation between the-y’s and the x’s is obviously given by 

X d t )  =rdO CY&) (8) i s  
The ‘observables’ (population averages) are obtained by averaging over the x‘s, i.e. by 
normalizing the sum over the y’s. If the reproduction rates are random variables, we 
are interested in the corresponding expectation values of the observables, which can be 
obtained by replica methods. 

Following Demda (1981), we assume that the reproduction rates A(S)  are given 
by independent ‘quenched’ random variables for each different strncture S. We assume 
in fact A(S)=exp(kE(S)+BhX2 S,), where the ‘energy’ E(S) is a Gaussian random 
variable of zero mean and variance equal to N/2. We have also introduced an ‘external 
field’ h, controlling the relative ratio of positive to negative S’s. Introducing the replica 
indices a = 1, 2, . . . , n, the overlap matrix 

and performing the average over the ‘energy’ distribution, we obtain 

where 8(K) (x, y)  denotes a Kronecker delta. In this formulation, we recognize a gen- 
eralization of the problem considered by Franz et UZ (1992, 1993), where several real 
replicas of the same spin glass are constrained to have &ed values of the overlaps 
between themselves. In our case, the number of replicas, T, is assumed to go eventually 
to i h i t y ,  and the constraint is applied only between successive ‘generations’. We may 
distinguish two cases: (1) ‘frozen’ behaviour: for some replicas (a,b) one has 
liml,-fl,,pZb(tt’)=l; (2)“evolving’ behaviour: for any t#t’ ,  one has IpZb(tf)[ (1, 
V(a, b). Moreover we may assume a one-step replica symmetry breaking scheme (Gross 
and Mkzard, 1984), introducing a variational parameter m(O<mS 1). We thus obtain 
[Zq =exp(-NG), where we express the ‘free energy’ G in terms of the ‘magnetization’ 
p = (SS(t)>, and we have 

W 
--: 

n 

We remind that Tis the number of generations we are considering. We wish eventually 
to let T+m. In the previous formula, we have introduced the followhg expressions: 

s(p)=ln’2-$[(1 -p) In(] -@)+(I + p )  h ( 1  +,U)] (12) 

(,(p,h)=ePcosh /3h+Je-Z~+e2BsinhZ/3h. (13) 
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We must now identify the saddle point with respect to m and ,U. A straightfonvard 
analysis yields the following solutions: for case (1) 

m=-. 2m tanh-lp =pmhT 
kT ' 

in the absence of replica symmetry breaking we set m= 1 and obtain 

tanh-'p =phT. (15) 

The corresponding values of G are given by 

Since we have to maximize G with respect to m, we see that the replica symmetric 
solution must always be discarded, in the T-+m limit, for case (1). This is confirmed 
by an analysis via the original Demda (1981) probabilistic method. 

For case (2) we obtain, when m < 1 : 

This equation must be supplemented by the equation connecting h and ,U : 

gm sinh pmh , . , ~ .  .,l .,,., ~ 

P =  J e - 2 h + e 2 ~ m  s& p d '  

The Corresponding values of the 'free energy' G are given by 

For small values of p and k, it is easy to see that the stable phase is the replica symmetric 
(m= 1) one of case (2). When h=O, it is easy to identify the line k=k,(p) in which the 
free energy of this phase becomes equal to that of the replica symmetry breaking (RSB) 
one for case (1) and (2) respectively; the second transition line, k=k:(J), is most easily 
identified by setting m = 1 in (17) : 

. .  
kc(p)=2(m-J/3-~Incoshp) Case (1) 

Case (2) k:(P)=2Jln2coshP-p tanhp. 
, ~ ~ (20) 

The two transition lines are shown in figure 1. It is clear that the first line always 
prevails. When the 'magnetic field' h is non-zero, one has to solve the corresponding 
equations numerically. Nevertheless the general aspect of the transition curves remains 
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Figure 1. Transition lines k.(p) (full line) and k:(p) (dashed line) in the (k, p )  plane for 
h=O. 

the same. We have thus identified the transition line k@) above which the population 
is frozen in an adaptation optimum: all individual molecules are identical at a given 
generation and from generation to generation. 

Below the transition line, the population does not exhibit adaptation, and its behav- 
iour is similar to a population evolving in a 'flat fitness landscape' (Demda and Peliti, 
1991), i.e. in the absence of selection. A reminder of the replication mechanism is 
exhibited by the self-overlap QM(tt') =tanh"-" p, which shows that the correlations in 
 the 'average genotype' decay &e those of a onedimensional Ising model. 

The model we have just discussed is pathological in the sense that when adaptation 
takes place all the molecules of the population become identical. Selection leads there- 
fore to the persistence of a single molecular species. This is analogous to the lack of 
thermal fluctuations which characterises the REM spin glass. When the 'fitness landscape' 
A(S) is'smoother-i.e., when some correlations between the values of A(S) for similar 
structures S exist-mutations lead to some differentiation with in^ the population. 
Smoother landscapes are. obtained, for example, by considering the NK landscapes 
discussed by Kauffman (1989) or the 'Hopfield landscape' investigated by Leuthiusser 
(1987) and Tarazona (1992). The analytical methods of the statistical physics of spin 
glasses may also be applied to the last case, at least close enough to the error threshold 
(Sellitto and Peliti, in preparation). 
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